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Abstract

Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial
gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted
Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a
grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view
(GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were
collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture
models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal
fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region.
The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to
the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to
the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly
due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be
derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous
and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution.
Including the short wave infrared (SWIR) region in the hyperspectral and multispectral endmember data significantly reduced the Pearson
correlation coefficient values among endmember spectra. Therefore, combination of visible, NIR, and SWIR information is likely to further
improve the utility of SMA in understanding ecosystem structure and function and may help narrow uncertainties when utilizing remotely sensed
data to extrapolate trace glas flux measurements from the canopy scale to the landscape scale.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Spectral mixture analysis

All land surfaces are spatially heterogeneous at some scale. As a
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instrument (herein referred to as a pixel), especially those detected
by coarse spatial resolution instruments, are spectrally complex and
therefore create a heterogeneous spectral mixture rather than one
spectrally “pure” signal within the pixel. However, traditional
classification methods often classify the whole pixel as a specific
cover type assumed to represent the dominant component within
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the pixel, and stop short of providing additional information about
the existence and relative fraction of additional cover types within
the pixel. Thus, improving spectral unmixing techniques to
quantify land cover types within pixels can greatly benefit surface
land cover interpretation and generation of derivative land cover
products. Due to the inherent heterogeneity of land surfaces,
developing and validating spectral mixture analysis (SMA)
techniques to study cover types at the subpixel scale is highly
desirable for many applications regardless of the original pixel size.
Benefits of sub-pixel land cover quantification range from im-
proved ecosystem change detection (e.g. Monteiro et al., 2003) to
potentially increasing our ability to correlate remote sensing data
with exchanges of mass and energy between the biosphere and the
atmosphere (see Chen et al., 1999; Ogunjemiyo et al., 2003). It may
also improve our understanding of the biotic controls on these mass
and energy exchanges and may allow us to partition the control
of whole systems fluxes among cover types having different
phenology.

SMA is an inverse method for deriving fractional coverage of
spectrally distinct features within a pixel (Adams & Smith, 1986).
In spectral mixture theory, the spectral signal of a pixel can be
represented as a mixture of signals contributed by all spectrally
“pure” features, or endmembers, within the instantaneous field of
view (IFOV) of the sensor at a given time (Peddle et al., 1999;
Sabol et al., 2002; Woodcock & Strahler, 1987). Theoretically, if
all endmembers within an image can be identified and spectrally
characterized, then the pixels may be characterized by how much
of each endmember is contained within it. Practical applications
of the spectral mixture models, however, are limited by the
number of available spectral bands and the diversity among end-
members. High contrast endmembers (i.e. endmembers contain-
ing poor spectral correlation) are recommended to obtain spectral
mixture models, and highly correlated endmembers should be
avoided (Meer & Jong, 2000; Woodcock & Strahler, 1987) be-
cause they can exacerbate nonlinearities in spectral mixing and
therefore cause uncertainty and error in SMA.

Much progress in spectral mixture techniques using remote
sensing data has been made in recent years. Ground feature areal
fraction information has been successfully provided by spectral
mixture interpretation in many studies (e.g. Garcia-Haro et al.,
1996; Jasinski & Eagleson, 1990; Kootwijk et al., 1995; Meer,
1995; Wessman et al., 1997). In addition, SMA theory has been
used to quantify vegetation biomass, fraction of absorbed photo-
synthetically active radiation (FAPAR), leaf area index (LAI),
and net primary productivity (NPP) (e.g. North, 2002; Peddle
et al., 1999), and to map logging effects (e.g. Monteiro et al.,
2003), snow cover (e.g. Painter et al., 1998; Vikhamar & Solberg,
2003), tree cover (e.g. Hansen et al., 2002), and impervious
surfaces (e.g. Phinn et al., 2002; Ridd, 1995; Wu & Murray,
2003) in various applications. Clearly, further developments in
SMA theory, including advances in error analyses, have the
potential to affect studies across a wide range of environmental
monitoring applications.

SMA techniques include both linear (e.g. Adams et al., 1995;
Bastin, 1997; Foody & Cox, 1994; Meer, 1995; Peddle et al.,
1999; Roberts et al., 1998; Rosin, 2001) and nonlinear (e.g. Borel
& Gerstl, 1994; Huang & Townshend, 2003; Huete, 1986; Koot-

wijketal., 1995; Ray & Murray, 1996; Roberts etal., 1993; Zhang
et al., 1998) mixture approaches, each of which contains different
levels of computational and conceptual complexity. If multiple
scattering can be ignored, the mixed spectrum can be expressed
by a linear combination of the endmember spectra based on their
areal fractions. In nonlinear spectral mixture models, multiple
scattering among components within the pixel is considered and
mixed spectra are expressed using nonlinear contributions of
multiple endmembers within the pixel. A nonlinear mixture
model can better reduce residuals and improve unmixing
accuracy, but its multiple scattering effects are not linearly cor-
related with the endmember areal fractions within the pixel. The
greater complexity of nonlinear SMA methods, coupled with the
non-intuitive interpretation of nonlinear SMA results (Kootwijk
et al,, 1995; Ray & Murray, 1996) underscores the need to
evaluate both linear and nonlinear SMA approaches in a variety of
vegetation structural types to determine their relative and absolute
sources of error and uncertainty wherever possible.

Endmember collection and calibration are important in the
application of SMA. In some laboratory and field spectral mixture
experiments, the endmembers and the mixed signal had been
acquired under common illumination and atmospheric condi-
tions, and the calibration between them was not necessary (e.g.
Borel & Gerstl, 1994; Ray & Murray, 1996; Zhang et al., 1998). In
other applications on satellite or photographic images, image
endmembers were selected from the image pixels directly, and
again calibration was not necessary because the endmembers
were in the same radiometric scale as the other pixels in the
imagery. A third class of SMA applications have utilized
laboratory collected or field collected reference endmembers to
interpret the satellite imagery, with endmembers calibrated to the
imagery so that the models could run correctly irrespective of
differences in image/endmember acquisition radiometry (e.g.
Adams & Smith, 1986; Adams et al., 1995; Sabol et al., 2002).
Generally, reference endmembers contain higher purity than
image endmembers, and they may produce higher accuracy or
better understanding of the SMA. However, because of the
uncertainty in pixel geolocation arising from radiometric and
georegistration constraints of satellite data, it is difficult to
quantify the performance of spectral unmixing techniques bet-
ween image pixels and actual ground endmember fractional
coverage in the field. Here, we introduce a field spectral sampling
technique using a tethered balloon-mounted remote sensing
system to evaluate linear and nonlinear SMA performance under a
condition of high geometric precision over a forested ecosystem.

1.2. SWAMI platform

The orbital altitudes of IKONOS, Landsat ETM+, and
MODIS satellite sensors are about 700 km, while the altitude of
remote sensing-equipped aircraft is usually higher than 2 km due
to safety considerations. To bridge the spatial gap between
ground measures and satellite or aircraft measures, a hyperspec-
tral remote sensing instrument platform called the Short Wave
Acrostat-Mounted Imager (SWAMI) has been developed
(Vierling et al., 2006-this issue). This platform can be attached
to the tether line of a research balloon and used to measure the
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hyperspectral reflectance of surface features using nested
GIFOV sampling approaches from the ground up to approxi-
mately 2 km altitude above ground level. In addition, because
tethered balloons have been used to quantify a variety of trace
gas fluxes at the landscape scale [i.e. methane (Beswick et al.,
1998; Choularton et al., 1995), non-methane hydrocarbons
(Davis et al., 1994; Guenther et al., 1996; Greenberg et al., 1999;
Spirig et al., 2004; Zimmerman et al., 1988), and carbon dioxide
(Kuck et al., 2000)], employing quantitative radiometric instru-
mentation on such a platform opens new opportunities for com-
paring trace gas flux and spectral properties of vegetation at
scales comparable to and larger than those measured by standard
flux towers. Therefore, data acquired through platforms such as
the SWAMI may be used to complement those data acquired
through the tower-based Spectral Network (SpecNet) Working
Group. Vierling et al. (2006-this issue) provide a detailed des-
cription of the SWAMI design, function, instrumentation, and
potential applications.

Tethered balloons have been widely used for remote sensing
purposes for over a century. Recently, true color and infrared
aerial photographs taken from balloons or kites have been used
in photography-based studies of periglacial features, vegetation
growth, and soil properties (e.g. Boike & Yoshikawa, 2003;
Buerkert et al., 1996; Friedli et al., 1998; Gerard et al., 1997).
The study described in this paper, however, is the first time to
our knowledge that a hyperspectral system has been flown
from a tethered balloon in order to perform SMA. We attain a
GIFOV comparable in area to four optical Landsat TM or ETM
+ pixels in order to study a conifer forest-grassland boundary
where four endmembers (tree, grass, bare soil, and shadow)
predominate.

In previous research, there has been little emphasis on
evaluating linear and nonlinear models using data concurrently
measured on the ground and from the air. High-resolution aerial
photography (e.g. Elmore et al., 2000; Lobell et al., 2002; Small,
2001), Landsat data (e.g. Bastin, 1997; Foody & Cox, 1994), and
lidar data (Chen et al., 2004) have been used to evaluate unmixing
results in previous studies. In these methods, the atmospheric
influences, geo-registration, and spatial resolution of imagery
caused uncertainties in deriving the actual ground cover area
fractions for evaluation. To reduce the uncertainties, we used the
SWAMI platform to collect both spectral signals and ground
video at a low altitude so that the effects of atmosphere, geo-
registration, and spatial resolution were minimized. Thus, this
study can provide higher accuracy and new understanding of
different mixture models.

Additionally, the use of hyperspectral data in such a sampling
scheme provides other potential benefits for SMA. The benefits
ofusing hyperspectral data compared with multispectral satellite
data are pronounced: (1) the endmembers can be characterized
by their continuous spectra with high accuracy; (2) the
performance of different models can be better understood
when using continuous spectra as inputs; and (3) hyperspectral
data may provide a higher degree of spectral separation among
endmembers, therefore possibly reducing complications arising
from unmixing ground components with similar spectral
characteristics. Hyperspectral data can also be convolved to

multispectral data to simulate satellite data performance, pro-
viding a more thorough understanding of how SMA models may
perform using various orbiting sensors.

1.3. Objectives

The main goal of this study is to evaluate the performance of
linear and nonlinear SMA over a conifer forest-grassland
ecotone using unique spectral data and validation data collected
both by the SWAMI platform and via ground-based measure-
ment. Four key questions are addressed in this paper: (1) does
spectral mixture occur linearly and/or nonlinearly at the subpixel
scale of an open forest/grassland ecotone?; (2) at what accuracy
can the linear and nonlinear models predict the ground
component fractions with a given mixture signal?; (3) how
much residual error occurs when linear and nonlinear models are
used to interpret the areal fractions of different surface features?;
and (4) can the reduced dimensionality of multispectral data be
used to correctly interpret sub-pixel information in this
ecosystem?

These specific study objectives complement our larger
objective to develop tethered balloons into viable tools that
can be used to establish and scale relationships between trace gas
fluxes and surface radiometry (see Vierling et al., 2006-this
issue). This goal is consistent with recent calls for the
development of novel yet inexpensive sampling capabilities at
intermediate scales (e.g. Gamon et al., 2004) and supports the
scientific goals of the SpecNet community and related efforts.
Aside from the fact that tethered balloons can carry instrumen-
tation to quantify both fluxes (e.g. Greenberg et al., 1999) and
surface reflectance (Vierling et al., 2006-this issue) across scales
larger than those measured at flux towers, the spectral unmixing
analyses presented here may help to extend recent methods of
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Fig. 1. Digital Orthophoto Quadrangle (DOQ) of study site. The GIFOV of
SWAMI detected area in this study case is noted by white circle. Ground control
center is located at 103.37°W, 44.08°N. The image was acquired from South
Dakota Department of Environment and Natural Resources, Geological Survey.
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Fig. 2. The flow chart of data collection (noted by grey boxes) and data processing for SMA.

using whole-pixel vegetation classifications to better calibrate
and predict trace gas fluxes (Chen et al., 1999; Ogunjemiyo et
al., 2003) to the sub-pixel level.

2. Methods
2.1. Study area

Field experiments using the SWAMI platform were con-
ducted in July 2003 in a forest/grassland ecotone west of Rapid
City, South Dakota (Fig. 1). The study site is located in a topo-
graphically flat area (103.37°W, 44.08°N, elevation: 1287 m).
The site is dominated by ponderosa pine (Pinus ponderosa)
in the overstory, with the understory populated by various
graminoids and short forbs.

2.2. Data acquisition

The Short Wave Aecrostat-Mounted Imager (SWAMI) was
used to collect surface spectral data in this study. The platform,
mounted on a tethered balloon, contained a hyperspectral
spectroradiometer (Fieldspec Dual UV/VNIR, Analytical Spec-
tral Devices, Boulder, CO) with the 350 nm to 1050 nm detection
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Fig. 3. Ground endmembers collected by FR field spectroradiometer. Regions
seriously influenced by atmosphere were removed.

region, a miniature color video camera (Supercircuits, Inc.,
Model PC169XS, Leander, TX) with 460 lines resolution, an
OEM-grade global positioning system receiver (Model Svee
Eight Plus, Trimble Navigation Ltd., Sunnyvale, CA), and other
meteorological instrumentation (see Vierling et al., 2006-this
issue). The GPS data and video signal were transferred to the
ground via wireless modem for ground control adjustment. The
flow chart of data collection and data processing is indicated in
Fig. 2.

The altitude of the SWAMI platform was quantified using
the GPS receiver. The color video was transferred to the ground
and recorded on analog videotapes to identify the detected
surface in the data processing; these images were later
transferred to digital format for analysis. The dual UV/VNIR
field spectroradiometer contained two fiberoptic cables; each
leading to a different but commonly housed spectrometer. In
this study, the downward pointing cable was fitted with an 18°
foreoptic to record spectral surface radiance, while the upward
pointing cable was fitted with a “remote cosine receptor” dif-
fusing cap to measure solar irradiance. Real-time conversion of
raw digital number to radiance or irradiance was accomplished
using calibration coefficients provided by the manufacturer.
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Fig. 4. Simulated Landsat 7 multispectral endmembers.
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Fig. 5. Captured base image and classified image denoting spectroradiometer GIFOVs with circles.

The spectroradiometer used two different fixed concave
holographic reflective gratings that disperse the collected
radiance and irradiance onto two fixed photodiode arrays.
Each array had 512 individual detection elements so that all
wavelengths were collected at the same time. The optical heads
of the video camera and the downward pointing cable were
carefully mounted to the platform in the same plane to ensure
target co-location. In this study, the dual UV/VNIR spectro-
radiometer and the video camera were pointed and stabilized at
nadir.

In this study, both radiance and irradiance data were
collected at the same time on the SWAMI platform and were
transferred to the ground, thus the reflectance spectra could be
calculated on the ground in real time. Classification results of
video images captured in a SWAMI spectrum collection period
(20 s) were averaged due to the movement of the platform in
that period.

In situ ground feature spectra, including tree, grass, bare
soil, and shadow, were collected in the field using an
Analytical Spectral Devices (Boulder, CO) FieldSpec Pro FR
(350 to 2500 nm) at the time of SWAMI data acquisition in the
sky. A white reference panel (spectralon) was measured prior
to every endmember measurement to calculate reflectance data.
The data used in this study were collected at approximately
13:40 local daylight time (solar noon=13:00 LDT) under near
cloudless conditions. GPS location and digital photos of each
ground measurement were acquired for endmember data
processing. The common wavelengths of the two spectro-
radiometers were cross-calibrated in the lab and the reflectance
measurements of both instruments matched well. The end-
members collected on the ground by the FR spectroradiometer
and the mixed spectra collected on the SWAMI platform by the
dual UV/VNIR spectroradiometer were acquired over a short
time period with similar illumination and atmospheric condi-
tions, and thus did not require further calibration.

2.3. Spectral data for mixture analysis
In this field experiment, the SWAMI platform was flown

from 13:37 to 15:00, with the maximum platform height of
1030 m above ground level (AGL). After examining the video

to assess target stability and heterogeneity, we selected one
SWAMI spectrum collected at 233 m AGL for SMA. The
collection time of this spectrum was at 13:43. The spectral
region of 400—900 nm was used for SMA due to its higher
quality and better stability than other regions. The diameter of
ground instantaneous field of view (GIFOV) of the SWAMI
spectrum was 74 m. Within the spectrometer GIFOV, four
major surface features (i.e. endmembers) occurred: trees
(ponderosa pine), grass/forbs, bare soil, and shadow (including
self-shaded trees as well as shadows cast on understory
vegetation and bare soil).

More than 10 spectra of each major ground feature (tree,
grass, bare soil, and shadow) were collected using the FR
spectrometer. These spectra were collected in various locations
under the SWAMI detection area to capture the natural variation
within the target. Tree spectra were collected on the top of several
young trees (2—3 m high) on the sunlit side. Photos captured at
the measurement points indicated that the tree spectra include
reflectance from the sunlit branches, some self-shadowing caused
by clumped needles, and natural gaps between branches. Bare
soil endmembers were collected over both a bare soil road and
the bare ground between vegetated areas (Fig. 5). Grass
endmembers were acquired over various sunlit understory
grasses/forbs. The measured shadow endmembers included

classes

[~ 1 bare soil
[ grass

B tree
Il shadow

Fig. 6. Classified base image with GIFOVs denoted for each second during 20-s
spectral collection period.
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completely shaded tree, shaded understory grass/forbs, and
shaded bare soil. At least four ground measurements of each
endmember were selected from FR spectrometer measurements,
and the averages of these spectra were taken to represent the
endmember spectral signal. Each endmember spectrum therefore
incorporated some of the variation inherent in each natural
surface feature. The spectral ranges of these reference end-
members were 350—1350, 1450—-1750, and 2000—-2350 nm to
exclude those regions seriously influenced by atmospheric
absorption (Fig. 3). In this study, the tree endmember reflectance
was slightly higher than the grass endmember reflectance in the
green region because the understory grass had passed its period
of maximum greenness and was much higher in the near infrared
(NIR) region most likely caused by the difference in canopy
structure between the trees and grass/forbs. However, because
these two endmembers were highly correlated, additional SMA
was conducted by combining the two green vegetation end-
members into one, along with retaining bare soil and shadow as
additional endmembers. The endmember spectra from the 400 to
900 nm were used for the SMA in this study because those data
coincided with the selected spectral range of the SWAMI
instrument.

To better understand the potential unmixing performance of
multispectral satellite data, the hyperspectral data of both
endmembers and the SWAMI spectrum were converted into
multispectral data using the spectral response functions of
Landsat 7 ETM+ (Landsat 7 Science Data Users Handbook,
http://Iltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.
html) in six bands ranging from 450 to 515, 525 to 605, 630 to
690, 750 to 900, 1550 to 1750, and 2080 to 2350 nm,
respectively. The endmembers of the six simulated Landsat
bands centered at 482.5, 565, 660, 825, 1650, and 2215 nm are
shown in Fig. 4. The first four bands were used for the SMA in
this study due to the limited detection region of SWAMI
spectra.

2.4. Spectral mixture models
Awidely used simple linear spectral mixture model (e.g. Phinn

etal., 2002; Schowengerdt, 1997; Theseira et al., 2002; Vikhamar
and Solberg, 2003; Wu and Murray, 2003) was used in this study:

Pmix = Pufi + Pofe + Pofo + Pofs (1)
where
JisSerfo, 20, and fi + fo + fo + /=1 (2)

Here, ppnix 1s the calculated mixture spectrum using the linear
mixture model; p;, pg, pv, and p are the endmember spectra of
tree, grass, bare soil, and shadow; and £, f,, f, and £; are the areal
fractions of tree, grass, bare soil, and shadow endmembers within
the detected surface. The sum of endmember areal fractions is
equal to unity.

The difference (pgifrerence) between the mixture model (ppix)
and the real field measurement, SWAMI spectrum (pswanr), 1S
caused by the total residuals and unknown noise in the GIFOV
as calculated using Eq. (3). The root-mean square error (RMSE,

prumse) 18 derived by Eq. (4) to evaluate the accuracy of the
model, where S is the number of spectral bands.

Pdifference — Pmix~ PSWAMI (3 )

2
Pmix P,
PRMSE = —( ;WAMI) (4)

Given endmember spectra and SWAMI spectrum, the end-
member areal fractions f'can be found by solving a constrained
least squares problem (Egs. (1) and (2)) with minimum error
(Eq. (4)).

Though the linear mixture models may yield useful results,
nonlinear models could better explain the effects of multiple
scattering in complex vegetated surfaces (Borel & Gerstl, 1994;
Theseira et al., 2002). Thus, a nonlinear spectral mixture model
was used in this study to explore scattering influences. The
nonlinear mixture model followed the format of previous
nonlinear studies (e.g. Ray & Murray, 1996; Zhang et al., 1998).
Considering the complexity of the four-endmember model, not
all scattering effects were taken into account in this study. Due
to the complexity of the tree canopies, the scattering relative to
tree endmember, including the scattering between tree and tree
(pepy), grass and tree (pgpy), bare soil and tree (py,p;), and shadow
and tree (psp;), were assumed to be the most significant and
were included in the nonlinear mixture model. We utilized the
methodology described in Eqgs. (5) (6) and (7) to calculate the
nonlinear mixture within a pixel:

Pmix = Pdt + Pgdg + poab + psas + pipby + pep byt
+ Popibo + pspibsi (5)

where

ai, dg, av, As, by, by, by, by=0,and a; + ag + ay
+ as+by + bgt + by + by =K (6)

ﬁ = at/Ka fg = ag/K> fb = ab/Kv f; = as/Kv ﬁt
= btt/Ka fgt = bgt/Ka ﬁ)t = bbt/K; fst
=by/Kand fi+fo +fo +fi +fu Hfa+ S+ Sa=1  (7)

Here ppix 1s the nonlinear model derived mixture spectrum; py,
Pe> Pv, and pg are the endmember spectra of tree, grass, bare soil,
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Fig. 7. Statistics of the classification results upon the base image in the 20-s
collection period.
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Table 1
Comparison of areal fractions ( f) and error (prvsg) derived from all four-endmember spectral mixture models
Data Models Grass  Bare soil Shade Tree  Grassxtree Bare soil xtree Shadowxtree Treextree Sum Error
(/o) (/o) (/) () (for) (/s (/1) (PrMSE)
Hyperspectral (a) Validation data, linear 0.46 0.12 0.07 0.35 1 0.054
mixture
(b) Linear unmixing 0.46 0.16 0.35 0.03 1 0.003
(c) Nonlinear unmixing 0.36 0.38 0 0.02 0 0 0 0.24 1 0.002
Multispectral  (d) Validation data, linear 0.46 0.12 0.07 0.35 1 0.038
mixture
(e) Linear unmixing 0.50 0.15 0.35 0 1 0.002
(f) Nonlinear unmixing 0.24 0.30 0 0 0.14 0.12 0.08 0.12 1 0.000

and shadow. ay, a,, a,, and ag are the contribution factors of the
first-order mixture (linear) effect of tree, grass, bare soil, and
shadow endmembers while by, by, by, and b are the contribution
factors of the second-order mixture (multiple scattering influ-
ences) effect between tree and tree, grass and tree, bare soil and
tree, and shadow and tree endmembers due to multiple scattering.
K is the sum of all contribution factors. The areal fractions of
different contribution items ( f;, fo, fo, /s fio for Jor and fg) are
calculated using Eq. (7). The sum of areal fractions is equal to
unity.

The difference (pgifference) and RMSE (prmsg) of the
nonlinear model were also calculated using Eqs. (3) and (4).
The solution of the endmember areal fractions was again derived
by solving a constrained least squares problem (Egs. (5) and (6))
at the point of minimum error (Eq. (4)).

A unique solution of endmember areal fractions can be
interpreted by linear and nonlinear models as long as the number
of spectral bands/channels plus one is equal to or larger than the
number of endmembers. In this study, both field-collected hy-
perspectral data and simulated multispectral data were used to
examine the linear and nonlinear models using spreadsheet
software (Excel, Microsoft, Redmond WA).

2.5. Ground data used in model evaluation

The ground spectrum collected by the SWAMI platform
occurred over a 20-s period, thus 20 surface images were captured
from the video collected by the color camera in the frequency of
one frame per second during the data collection period. The size of
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Fig. 8. Comparison of linear mixture using validation data vs. field-collected
SWAMI spectrum.

each captured image was 1024 x 768 pixels. Because it contained
maximum overlap with all other images, the image captured at the
9th second was used as the base image. The base image was
classified into four land cover types, including tree (sunlit tree),
grass, bare soil, and shadow (including shadow on the ground and
self-shaded trees) using a two-step process based on the blue,
green, and red brightness. In the first image classification step, the
maximum likelihood method was used to classify the image into
three land cover classes: grass, bare soil, and tree/shade. Because
the similar brightness values of tree and shadow precluded sep-
arating these two classes, a second step was then made in which
classes originally designated as grass and bare soil were masked
from the original image, and then a minimum distance method
was used to separate the tree, shade, and grass which were
previously misclassified as tree/shade. The final classification re-
sult was visually compared with the original image (Fig. 5) and
was considered an accurate classification of the ground feature
fractional coverages.

The view centers of the other 19 images were registered with
the base image, and their GIFOVs were denoted on the base
image (Fig. 6). Statistical analyses of endmember areal fractions
were performed for these 20 GIFOVs based on the classification
result of the base image. Using the overlap of the 19 images with
the base image, we were able to characterize the footprint with
very good geometric control, with >99% of the classified ground
area quantified by SWAMI hyperspectral measures (see GIFOV
circle overlaps with base image in Fig. 6). The average end-
member fractions of grass, bare soil, shadow, and tree in the
collection period were 0.46, 0.12, 0.07, and 0.35, respectively
(Fig. 7). These data were used as validation data of endmember
areal fractions in order to evaluate the different spectral mixture
models (Table 1).

3. Results
3.1. Spectral mixture analysis using hyperspectral data

Ground validation data of endmember areal fractions (Fig. 7)
derived from the classification results of images captured by video
were used as the inputs of endmember fractions in Eq. (1) to
calculate linear mixture signals. The calculated mixture spectrum
was compared with the SWAMI spectrum (Fig. 8). The difference
between the linear mixture spectrum and the SWAMI spectrum
indicated that the linear spectral mixture derived from validation
data matched well in the visible region (400—-700 nm) but
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separated greatly in the NIR region (700—900 nm) where multiple
scattering produced nonlinear effects. Other potential reasons for
this discrepancy in the NIR region might be due to atmospheric
effects (X. Chen and L. Vierling, unpublished results) and the
selection of two vegetation endmembers. The RMSE of the linear
mixture result was 0.054 [shown in Table 1, (a)] and represented
the maximum amount of error when compared with other models.

By evaluating hyperspectral endmember spectra and the
SWAMI-acquired spectrum using the linear mixture model,
endmember areal fractions were interpreted. The difference and
error between the model-derived spectrum and the measured
SWAMI spectrum was significantly reduced relative to the first
model run where the model used ground validation data as inputs
[Table 1, (b), Fig. 9]. The nonlinear model derived mixture
spectrum and the areal fractions using four endmembers and the
SWAMI spectra are indicated in Fig. 10 and Table 1, (c). The
nonlinear model contained less difference and error than the two
application cases of linear model described above.

The endmember areal fractions of grass and bare soil derived
from the linear model (0.46 and 0.16, respectively) were close to
the validation data derived from the GIFOV image classification
results (0.46 and 0.12, respectively). The linear model sig-
nificantly overestimated the shadow fraction as 0.35 and un-
derestimated the tree fraction as 0.03 [Table 1, (b)]. This is likely
due to the high correlation of endmembers and the significant
scattering that occurred within plant canopies in the NIR.

The areal fractions derived using the nonlinear model indicate
that the areal fractions from grass and bare soil were similar (0.36
and 0.38, respectively), while the areal fractions of tree and
shadow endmembers were low (0 and 0.02, respectively) [Table
1, (c)]. The multiple scattering between tree and tree endmem-
bers was significant (f;=0.24), whereas the contributions of
other scattering influences were zero. The bare soil areal fraction
(0.38) was approximately a factor of 3 higher than the validation
data (0.12), and the other endmembers varied from the validation
data to different extents.

The above analyses indicate that, on one hand, both linear and
nonlinear mixture models can be used to calculate spectral
mixture performance with low errors in spectral differences
between modeled and measured spectra. However, some model
derived endmember areal fractions varied greatly from the
validation data. Of particular note is that although endmember
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Fig. 9. Comparison of linear model vs. field-collected SWAMI spectrum.
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Fig. 10. Comparison of nonlinear model vs. field-collected SWAMI spectrum.

fractions could be calculated with a low error term using the
linear approach [Table 1, (b)], the derived fractions of tree and
shade differed substantially from the actual validation data.
Thus, in using linear SMA in such a forested conifer ecosystem,
much caution is in order if one tries to separate the shade and tree
endmembers (see also Chen et al., 2004). Further studies are
needed to improve the models and better interpret the results into
the real ground endmember fractions, particularly where
nonlinear scattering effects are prevalent.

3.2. SMA using simulated multispectral Landsat 7 data

In many studies, it may not be possible to acquire hyper-
spectral data collected via spaceborne (e.g. Hyperion), airborne
(e.g. the Airborne Visible Infrared Imaging Spectrometer,
AVIRIS) or field instruments. SMA has been widely applied to
multispectral Landsat data (e.g. Adams et al., 1995; Casals-
carrasco et al., 2000; Monteiro et al., 2003; Peterson & Stow,
2003; Sabol et al., 2002; Small, 2001; Wu & Murray, 2003); thus
simulated multispectral Landsat 7 data were used for SMA in this
study to examine the models with these data sets of lower spectral
dimensionality. Both multispectral endmembers and SWAMI
GIFOV data contained four bands, including blue, green, red, and
NIR, centered at 482.5, 565, 660, and 825 nm, respectively. The
mixture signal calculated using areal fractions of validation data
was compared with the SWAMI spectrum in Fig. 11 and Table 1,

037 —o— SWAMI spectrum
0.251 | ---#-- Linear mixture using validation data »
—a— Difference ’
o 0.21
o
c
S 0.154
3
= 0.119
Q
o
0.05
O B
-0.05 T T T T )
400 500 600 700 800 900

Wavelength (nm)

Fig. 11. Comparison of multispectral linear mixture using validation data vs.
field-collected SWAMI spectrum.
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Fig. 12. Comparison of multispectral linear model vs. field-collected SWAMI
spectrum.

(d). The mixture results matched well with SWAMI measure-
ments in blue, green and red bands, yet varied greatly in the NIR
band with a difference of about 0.08 (Fig. 11). The endmember
areal fractions derived by the linear and nonlinear models are
shown in Table 1, (e) and (f) and their spectra were compared
with the SWAMI spectrum (Figs. 12 and 13, respectively). Both
models contained much lower errors than the multispectral linear
mixture using areal fractions of validation data [Table 1, (d)]. The
linear model-derived grass and bare soil endmember fractions
(0.50 and 0.15, respectively) were close to the validation data
(0.46 and 0.12, respectively) while the estimation of shade and
tree (0.35 and 0, respectively) varied greatly from the validation
data (0.07 and 0.35, respectively). These results were similar to
the hyperspectral analysis results.

The multispectral nonlinear model-derived results [Table 1,
(f)] indicate that the contribution of the scattering between grass
and tree was 0.14, which was slightly higher than the other three
scattering influences between bare soil and tree (0.12), tree and
tree (0.12), and shadow and tree (0.08). The multispectral non-
linear model derived areal fractions of grass, bare soil, shade and
tree endmembers (0.24 and 0.30, 0, and 0, respectively) substan-
tially varied from the validation data (0.46, 0.12, 0.07, and 0.35,
respectively) [Table 1, (f) and (d)].

The above hyperspectral and multispectral mixture analyses
indicate that the linear model is more stable than the nonlinear
model in this system. The results of linear models were similar in
both hyperspectral and multispectral data [Table 1, (b) and (e)]. In
contrast, the nonlinear model considered not only the linear con-
tribution of endmembers, but also the multiple scattering in-
fluences among endmembers, thus the nonlinear model was
sensitive to different data sets and the SMA results of hyper-
spectral and multispectral data sets were greatly different [Table 1,
(c) and (f)]. In addition, most linear/nonlinear model-derived
endmember fractions varied from the validation data to some
extent and these differences were sometimes substantial (Table 1).

3.3. Correlation of endmembers

Surface features exhibit distinct and characteristic variations
in spectral radiance (e.g. Figs. 3 and 4). However, it is intuitive

that the more spectral correlation that occurs among end-
members, the more difficult it will be to discriminate endmember
fractions using SMA. The Pearson correlation coefficient and P-
value statistics for hyperspectral and multispectral endmembers
are shown in Table 2. The shade endmember had a high cor-
relation with the other three endmembers. Grass and tree were
both green vegetation, and they had very similar spectra (Fig. 3).
Both of them had low reflectance in red and high reflectance in
NIR, and their Pearson correlation parameters (R=0.996 and
0.994 for full range hyperspectral and multispectral data,
respectively) were higher than other R values (Table 2). Bare
soil contained lower correlations with grass, tree, and shadow
endmembers compared with the correlations among those three
endmembers. The high correlations of the four endmembers in
the 400—900 nm region likely caused high errors in the above
spectral mixture models.

Table 2 shows that the R value of shadow and bare soil
decreased from 0.98 to 0.51 when the hyperspectral region
extended from 400-900 nm to 350—2350 nm. Including short
wave infrared (SWIR) in the endmembers can effectively reduce
the R values among endmembers; thus, the SMA results could be
improved by including full range endmembers that were less
closely correlated with each other. Future unmixing efforts in
such ecosystems will benefit from the incorporation of SWIR
bands.

3.4. Re-selection of endmembers

Highly correlated endmembers can cause error in spectral
mixture models (Theseira et al., 2002). Meer and Jong (2000)
found that the use of poorly correlated endmembers improved
SMA-derived cover estimates relative to when endmembers
were highly correlated. For this reason, in some previous studies,
shadow was not considered as an individual endmember (e.g.
Chen et al., 2004; Lobell et al., 2002) and both grass and tree
were included in a green vegetation endmember (e.g. Adams et
al., 1995; Asner & Lobell, 2000). To examine the influence of
endmember selection on SMA in this study, we re-selected
endmembers for the analysis area. The grass and tree end-
members were linearly combined as one vegetation endmember
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Fig. 13. Comparison of multispectral nonlinear model vs. field-collected
SWAMI spectrum.
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Table 2

Pearson correlation (R values) and P values of hyperspectral and multispectral endmembers

Hyperspectral (400-900 nm)

Hyperspectral (350-2350 nm)

Multispectral (4 bands) Multispectral (6 bands)

Bare soil Grass Tree Bare soil Grass Tree Bare soil Grass Tree Bare soil Grass Tree
Grass 0.957 0.641 0.910 0.715
0.000 0.000 0.090 0.110
Tree 0.935 0.997 0.580 0.996 0.870 0.996 0.652 0.994
0.000 0.000 0.000 0.000 0.130 0.004 0.160 0.000
Shadow 0.980 0.994 0.984 0.510 0.955 0.958 0.961 0.989 0.972 0.512 0.909 0.905
0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.011 0.028 0.299 0.012 0.013

using their various fractions detected on the video images (Figs.
3 and 7, and Eq. (8)).

py = (0.35p, + 0.46p,)/(0.35 + 0.46) (8)

Here py, p;, and p, are the endmember spectra of vegetation, tree,
and grass, respectively.

The linear and nonlinear SMA models on three endmembers
were similar to those on four endmembers described in Egs.
(1)—(7). In the three-endmember nonlinear model, all scattering
influences among three endmembers were considered (Eq. (9)):

Pmix = Pyav + Prab + psas + pypsbys + pyPpbyb
+ pbpsbbs (9>

Here pix is the nonlinear model-derived mixture spectrum; p,,
Po, and pg are the endmember spectra of vegetation, bare soil,
and shadow. a,, a, and a, are the contribution factors of the
first-order mixture (linear) effect of vegetation, bare soil, and
shadow endmembers while b, by, and by are the contribution
factors of the second-order mixture (multiple scattering
influences) effect of vegetation, bare soil, and shadow end-
members due to multiple scattering. The equations used to
calculate the areal fractions of vegetation ( f;), bare soil ( f),
shadow ( f;), and the scattering items ( fyp, fvs, and fi,s) were
similar to Egs. (6) and (7).

The linear and nonlinear analyses of both hyperspectral and
multispectral data were performed using the vegetation, bare
soil, and shade endmembers and the results are listed in Table 3.
Most model-derived areal fractions still varied greatly from the
validation data despite endmember reselection. The unmixing
results of the linear model using hyperspectral and multispectral
data were very stable [Table 3, (b) and (e)], while the results of
the nonlinear model varied greatly [Table 3, (c) and (f)]. The

Table 3

nonlinear multispectral SMA model [Table 3, (f)] derived areal
fractions of bare soil and shade endmembers (0.13 and 0.06,
respectively) were very close to the validation data (0.12 and
0.07, respectively). Almost all multiple scattering influences
(fob, fvs» and fps) were relative to sunlit vegetation or shaded
vegetation, thus these contributions were added to the vegetation
fraction ( f;) item. The summed areal fraction (0.81) is equal to
the validation data (0.81). This result indicated that with
appropriate endmembers and the appropriate SMA model,
surface areal fractions could be calculated correctly. In other
words, the SMA method remains highly subject to user bias in
endmember choice.

4. Discussion and conclusion

SMA interprets areal fractions of surface features within a
pixel, unlike vegetation indices, which express the overall infor-
mation without abundance information of surface features within
that pixel. Successfully detecting the fractional abundances of
surface features cannot only be useful for interpreting biophysical
parameters for quantifying the land cover such as biomass and
LAI estimation, vegetated area, snow-cover area, and impervious
area (e.g. Hansen et al., 2002; North, 2002; Peddle et al., 1999;
Phinn et al., 2002; Vikhamar & Solberg, 2003; Wu & Murray,
2003), but can also capture the human effects on land use that are
difficult to interpret directly from vegetation indices. A compa-
rison of vegetation indices and SMA by North (2002) indicated
that SMA improved vegetation cover estimates made using vege-
tation indices. SMA techniques may prove useful when com-
paring remote sensing measurements to flux tower measurements
in real time, due to the fact that fluxes of CO,, water vapor, and
other trace gases can relate strongly to plant functional groups due
to differences in light availability, plant water status, and other

Comparison of areal fractions (f) and error (prymse) derived from all three-endmember spectral mixture models

Data Models Vegetation  Bare soil ~ Shade  Vegetation x bare soil Vegetation x shade Bare soil xshadow Sum Error
(/) (fo) () (fov) (fos) (fos) (PrvSE)
Hyperspectral (a) Validation data, linear 0.81 0.12 0.07 1 0.054
mixture
(b) Linear unmixing 0.42 0.21 0.37 1 0.003
(c) Nonlinear unmixing 0.13 0.16 0 0.03 0.62 0.06 1 0.002
Multispectral (d) Validation data, linear 0.81 0.12 0.07 1 0.038
mixture
(e) Linear unmixing 0.41 0.21 0.38 1 0.003
(f) Nonlinear unmixing 0.06 0.13 0.06 0.39 0.11 0.25 1 0.000
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ecophysiological considerations (e.g. Gamon et al., 2004; Guen-
ther, 1997). This point underscores the need for improved SMA
methodology when relating vegetation reflectance data with
ecosystem trace gas flux over heterogenecous and discontinuous
canopies where the understory receives a substantial fraction of
available sunlight. Because trace gas fluxes are driven by
processes occurring at the sub-pixel level in heterogeneous can-
opies, such multi-scale analyses are of importance to the goals of
the SpecNet community which includes the use of remote sensing
to understand the contributions of various functional types or
cover classes to fluxes. Continued work to spatially differentiate
endmembers that are highly spectrally correlated (e.g. grass and
tree fractions in this study), yet poorly related in their
ecophysiological function (particularly true, in this case, for
grasses and conifer tree species), will help to narrow uncertainties
in measuring trace gas fluxes using spectral information.

In some previous SMA research using field-based hyper-
spectral data, only two surface features were considered in the
comparison of linear and nonlinear mixture models, due to the
complexity of the nonlinear scattering and limitation of the data
collection (e.g. Borel & Gerstl, 1994; Ray & Murray, 1996;
Zhang et al., 1998). In the current study, a tethered balloon
platform was used for the first time to evaluate SMA in a conifer
forest using four common surface features: bare soil, grass, tree,
and shadow. This SWAMI field experiment provided unique
data that illustrate the significant challenges inherent in SMA
analysis for achieving reliable, quantitatively defensible results.
The linear mixture calculated by validation data (Figs. 8 and 11))
showed that nonlinear scattering influences were significant in
the NIR and were less influential in the visible region, which
agreed with previous results provided by Roberts et al. (1993),
Gilabert et al. (2000), and Lobell et al. (2002). Lobell et al.
(2002) found that weakly anisotropic reflectance occurred in the
NIR, while strongly anisotropic reflectance occurred in the vi-
sible region due to the high transmittance and reflectance of NIR
photons and high absorption of photons in visible region by most
surface features. Though the simplified nonlinear models used in
this study were not fully conclusive, they did represent new
efforts towards understanding nonlinear effects in a heteroge-
neous canopy using co-located data attainable using the SWAMI
platform and sampling design. This study suggested that using
full range endmembers with less correlation with each other
could improve the classification accuracy and address some of
the limitation in SMA. We anticipate that further improvements
in the SWAMI platform and sampling design, including con-
tinued field-based research on SMA in the context of biosphere—
atmosphere fluxes, will benefit the research goals of the
FLUXNET and SpecNet communities.

Though both the model-derived linear and nonlinear mixture
spectra highly matched the SWAMI spectrum, most derived
areal fractions of endmembers varied considerably from the
validation data. The uncertainty of endmember fraction
estimation from mixture models has been demonstrated in
previous research when evaluated with reference data (e.g.
Chen et al., 2004; Lobell et al., 2002; Rosin, 2001; Small,
2001). The results of the present study demonstrate that shadow
and vegetation endmembers were difficult to successfully

predict by linear model due to the high correlation and multiple
scattering influences of endmembers. Both linear and nonlinear
mixture models overestimated the areal fraction of bare soil
(Tables 1 and 2), which also occurred in Rosin’s (2001) spectral
mixture model. According to Gilabert et al. (2000), bare soil
reflectance can be influenced by adjacent cover types such as
plants; overestimation of bare soil occurs due to the increased
bare soil reflectance signal caused by significant side scattering
influences in the NIR. The comparison of hyperspectral and
multispectral SMA models indicated that the nonlinear model
was sensitive to the hyperspectral and multispectral data, while
the linear model was more stable when using these different
sets.

In addition to the significant influence of multiple scattering,
the spectral correlation of endmembers was presumably one of
the sources of error in the SMA. In this study, the four
endmembers (tree, grass, bare soil, and shadow) were highly
correlated in the region of the 400—-900 nm (Table 2) thus some
model-derived areal fractions varied greatly from the validation
data. The SMA of three endmembers (vegetation, bare soil, and
shadow) was performed and the nonlinear multispectral model
derived areal fractions matched well with the validation data in
some cases [Table 3, (f')]. This significant improvement could be
due to several reasons. First, the re-selection of endmembers had
reduced the correlations significantly. Secondly, the SMA
benefited from considering multiple scattering influences
between endmembers. Finally, using the Landsat 7 multispectral
response functions could capture the dominant spectral
characteristics and exclude the spectral regions containing less
information and higher error.

Research by Asner and Lobell (2000) and Lobell et al. (2002)
demonstrated that SWIR reflectance could be used to successfully
interpret the subpixel information of vegetation and soil due to
their spectral dissimilarity in these wavelength regions. In this
study, including SWIR significantly reduced the Pearson
correlation values (Table 2) between endmembers. Combination
of visible and SWIR information is likely to improve endmember
estimation using spectral mixture models in future studies,
particularly when using SMA to distinguish vegetation functional
groups. Furthermore, because vegetation SWIR reflectance has
been shown to be sensitive to vegetation water status (e.g. Carter,
1991), use of these wavebands may also further the goals of the
SpecNet community in linking reflectance spectra with ecophys-
iological function related to biosphere—atmosphere trace gas ex-
change. Therefore, future studies to link structural characteristics
(e.g. vegetation functional groups) and functional characteristics
(e.g. biosphere—atmosphere mass and energy fluxes) of ecosys-
tems using remote sensing data will benefit from the inclusion of
these wave bands in the measurement design.
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